Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
1.
Alzheimers Res Ther ; 16(1): 19, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263073

RESUMO

BACKGROUND: Epileptic seizures are an established comorbidity of Alzheimer's disease (AD). Subclinical epileptiform activity (SEA) as detected by 24-h electroencephalography (EEG) or magneto-encephalography (MEG) has been reported in temporal regions of clinically diagnosed AD patients. Although epileptic activity in AD probably arises in the mesial temporal lobe, electrical activity within this region might not propagate to EEG scalp electrodes and could remain undetected by standard EEG. However, SEA might lead to faster cognitive decline in AD. AIMS: 1. To estimate the prevalence of SEA and interictal epileptic discharges (IEDs) in a well-defined cohort of participants belonging to the AD continuum, including preclinical AD subjects, as compared with cognitively healthy controls. 2. To evaluate whether long-term-EEG (LTM-EEG), high-density-EEG (hd-EEG) or MEG is superior to detect SEA in AD. 3. To characterise AD patients with SEA based on clinical, neuropsychological and neuroimaging parameters. METHODS: Subjects (n = 49) belonging to the AD continuum were diagnosed according to the 2011 NIA-AA research criteria, with a high likelihood of underlying AD pathophysiology. Healthy volunteers (n = 24) scored normal on neuropsychological testing and were amyloid negative. None of the participants experienced a seizure before. Subjects underwent LTM-EEG and/or 50-min MEG and/or 50-min hd-EEG to detect IEDs. RESULTS: We found an increased prevalence of SEA in AD subjects (31%) as compared to controls (8%) (p = 0.041; Fisher's exact test), with increasing prevalence over the disease course (50% in dementia, 27% in MCI and 25% in preclinical AD). Although MEG (25%) did not withhold a higher prevalence of SEA in AD as compared to LTM-EEG (19%) and hd-EEG (19%), MEG was significantly superior to detect spikes per 50 min (p = 0.002; Kruskall-Wallis test). AD patients with SEA scored worse on the RBANS visuospatial and attention subset (p = 0.009 and p = 0.05, respectively; Mann-Whitney U test) and had higher left frontal, (left) temporal and (left and right) entorhinal cortex volumes than those without. CONCLUSION: We confirmed that SEA is increased in the AD continuum as compared to controls, with increasing prevalence with AD disease stage. In AD patients, SEA is associated with more severe visuospatial and attention deficits and with increased left frontal, (left) temporal and entorhinal cortex volumes. TRIAL REGISTRATION: Clinicaltrials.gov, NCT04131491. 12/02/2020.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Proteínas Amiloidogênicas , Cognição , Progressão da Doença
2.
Genome Med ; 15(1): 79, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794492

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified several risk loci, but many remain unknown. Cerebrospinal fluid (CSF) biomarkers may aid in gene discovery and we previously demonstrated that six CSF biomarkers (ß-amyloid, total/phosphorylated tau, NfL, YKL-40, and neurogranin) cluster into five principal components (PC), each representing statistically independent biological processes. Here, we aimed to (1) identify common genetic variants associated with these CSF profiles, (2) assess the role of associated variants in AD pathophysiology, and (3) explore potential sex differences. METHODS: We performed GWAS for each of the five biomarker PCs in two multi-center studies (EMIF-AD and ADNI). In total, 973 participants (n = 205 controls, n = 546 mild cognitive impairment, n = 222 AD) were analyzed for 7,433,949 common SNPs and 19,511 protein-coding genes. Structural equation models tested whether biomarker PCs mediate genetic risk effects on AD, and stratified and interaction models probed for sex-specific effects. RESULTS: Five loci showed genome-wide significant association with CSF profiles, two were novel (rs145791381 [inflammation] and GRIN2D [synaptic functioning]) and three were previously described (APOE, TMEM106B, and CHI3L1). Follow-up analyses of the two novel signals in independent datasets only supported the GRIN2D locus, which contains several functionally interesting candidate genes. Mediation tests indicated that variants in APOE are associated with AD status via processes related to amyloid and tau pathology, while markers in TMEM106B and CHI3L1 are associated with AD only via neuronal injury/inflammation. Additionally, seven loci showed sex-specific associations with AD biomarkers. CONCLUSIONS: These results suggest that pathway and sex-specific analyses can improve our understanding of AD genetics and may contribute to precision medicine.


Assuntos
Doença de Alzheimer , Humanos , Feminino , Masculino , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Estudo de Associação Genômica Ampla , Proteínas tau/genética , Biomarcadores , Inflamação , Apolipoproteínas E/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética
3.
Mol Psychiatry ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433968

RESUMO

The development of Alzheimer's disease (AD) involves central and peripheral immune deregulation. Gene identification and studies of AD genetic variants of peripheral immune components may aid understanding of peripheral-central immune crosstalk and facilitate new opportunities for therapeutic intervention. In this study, we have identified in a Flanders-Belgian family a novel variant p.E317D in the Toll-like receptor 9 gene (TLR9), co-segregating with EOAD in an autosomal dominant manner. In human, TLR9 is an essential innate and adaptive immune component predominantly expressed in peripheral immune cells. The p.E317D variant caused 50% reduction in TLR9 activation in the NF-κB luciferase assay suggesting that p.E317D is a loss-of-function mutation. Cytokine profiling of human PBMCs upon TLR9 activation revealed a predominantly anti-inflammatory response in contrast to the inflammatory responses from TLR7/8 activation. The cytokines released upon TLR9 activation suppressed inflammation and promoted phagocytosis of Aß42 oligomers in human iPSC-derived microglia. Transcriptome analysis identified upregulation of AXL, RUBICON and associated signaling pathways, which may underline the effects of TLR9 signaling-induced cytokines in regulating the inflammatory status and phagocytic property of microglia. Our data suggest a protective role of TLR9 signaling in AD pathogenesis, and we propose that TLR9 loss-of-function may disrupt a peripheral-central immune crosstalk that promotes dampening of inflammation and clearance of toxic protein species, leading to the build-up of neuroinflammation and pathogenic protein aggregates in AD development.

4.
Neurobiol Aging ; 130: 61-69, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37459659

RESUMO

Heterozygous loss-of-function (LOF) mutations in the progranulin gene (GRN) cause frontotemporal lobar degeneration (FTLD) by a mechanism of haploinsufficiency. For most missense mutations, the contribution to FTLD is however unclear. We studied the pathogenicity of rare GRN missense mutations using patient biomaterials. We identified a new mutation in GRN, c.1178 A>C, in a patient with a diagnosis of primary progressive aphasia. Neuropathological examination of autopsied brain showed FTLD with TAR DNA-binding protein 43 (FTLD-TDP) type A pathology with concomitant Alzheimer's disease pathology. Serum progranulin protein levels were reduced to levels comparable to known LOF mutations. The mutation is in the last codon of exon 10, in the splice donor sequence. Our data provide evidence that the mutation leads to aberrant splicing, resulting in a frameshift (p.(Glu393AlafsTer31)) and consequently nonsense-mediated mRNA decay. Our finding demonstrates that carefully examining sequencing data around splice sites is needed since this mutation was annotated as a missense mutation. Unraveling the pathogenicity of variants of unknown significance is important for clinical diagnosis and genetic counseling.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Demência Frontotemporal/genética , Progranulinas/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Degeneração Lobar Frontotemporal/patologia , Mutação/genética , Éxons/genética
5.
Genet Med ; 25(2): 100327, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36422518

RESUMO

PURPOSE: CAG/CAA repeat expansions in TBP>49 are responsible for spinocerebellar ataxia (SCA) type 17 (SCA17). We previously detected cosegregation of STUB1 variants causing SCA48 with intermediate alleles of TBP in 2 families. This cosegregation questions the existence of SCA48 as a monogenic disease. METHODS: We systematically sequenced TBP repeats in 34 probands of dominant ataxia families with STUB1 variants. In addition, we searched for pathogenic STUB1 variants in probands with expanded alleles of TBP>49 (n = 2) or intermediate alleles of TBP≥40 (n = 47). RESULTS: STUB1 variants were found in half of the TBP40-49 cohort. Mirroring this finding, TBP40-49 alleles were detected in 40% of STUB1 probands. The longer the TBP repeat length, the more likely the occurrence of cognitive impairment (P = .0129) and the faster the disease progression until death (P = .0003). Importantly, 13 STUB1 probands presenting with the full SCA48 clinical phenotype had normal TBP37-39 alleles, excluding digenic inheritance as the sole mode. CONCLUSION: We show that intermediate TBP40-49 alleles act as disease modifiers of SCA48 rather than a STUB1/TBP digenic model. This distinction from what has been proposed before has crucial consequences for genetic counseling in SCA48.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxia Cerebelar/genética , Fenótipo , Alelos , Expansão das Repetições de Trinucleotídeos/genética , Ubiquitina-Proteína Ligases/genética
6.
Alzheimers Dement ; 19(7): 2805-2815, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36576960

RESUMO

INTRODUCTION: Patients with familial early-onset dementia (EOD) pose a unique opportunity for gene identification studies. METHODS: We present the phenotype and whole-exome sequencing (WES) study of an autosomal dominant EOD family. Candidate genes were examined in a set of dementia cases and controls (n = 3712). Western blotting was conducted of the wild-type and mutant protein of the final candidate. RESULTS: Age at disease onset was 60 years (range 56 to 63). The phenotype comprised mixed amnestic and behavioral features, and parkinsonism. Cerebrospinal fluid and plasma biomarkers, and a positron emission tomography amyloid study suggested Alzheimer's disease. WES and the segregation pattern pointed to a nonsense mutation in the TRIM25 gene (p.C168*), coding for an E3 ubiquitin ligase, which was absent in the cohorts studied. Protein studies supported a loss-of-function mechanism. DISCUSSION: This study supports a new physiopathological mechanism for brain amyloidosis. Furthermore, it extends the role of E3 ubiquitin ligases dysfunction in the development of neurodegenerative diseases. HIGHLIGHTS: A TRIM25 nonsense mutation (p.C168*) is associated with autosomal dominant early-onset dementia and parkinsonism with biomarkers suggestive of Alzheimer's disease. TRIM25 protein studies support that the mutation exerts its effect through loss of function. TRIM25, an E3 ubiquitin ligase, is known for its role in the innate immune response but this is the first report of association with neurodegeneration. The role of TRIM25 dysfunction in development of amyloidosis and neurodegeneration merits a new line of research.


Assuntos
Doença de Alzheimer , Amiloidose , Demência , Transtornos Parkinsonianos , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Códon sem Sentido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/genética , Proteínas Amiloidogênicas , Biomarcadores , Proteínas com Motivo Tripartido/genética , Fatores de Transcrição/genética
7.
Alzheimers Dement ; 19(6): 2317-2331, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36464806

RESUMO

INTRODUCTION: Despite increasing evidence of a role of rare genetic variation in the risk of Alzheimer's disease (AD), limited attention has been paid to its contribution to AD-related biomarker traits indicative of AD-relevant pathophysiological processes. METHODS: We performed whole-exome gene-based rare-variant association studies (RVASs) of 17 AD-related traits on whole-exome sequencing (WES) data generated in the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study (n = 450) and whole-genome sequencing (WGS) data from ADNI (n = 808). RESULTS: Mutation screening revealed a novel probably pathogenic mutation (PSEN1 p.Leu232Phe). Gene-based RVAS revealed the exome-wide significant contribution of rare coding variation in RBKS and OR7A10 to cognitive performance and protection against left hippocampal atrophy, respectively. DISCUSSION: The identification of these novel gene-trait associations offers new perspectives into the role of rare coding variation in the distinct pathophysiological processes culminating in AD, which may lead to identification of novel therapeutic and diagnostic targets.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Exoma/genética , Estudos de Associação Genética , Fenótipo , Biomarcadores
8.
Brain ; 146(4): 1624-1636, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36171642

RESUMO

The missense mutation p.R406W in microtubule-associated protein tau leads to frontotemporal lobar degeneration with an amnestic, Alzheimer's disease-like phenotype with an autosomal dominant pattern of inheritance. In 2003, we described the pedigree of a Belgian family, labelled ADG, with 28 p.R406W patients. Over 18 years follow-up, we extended the family with 10 p.R406W carriers and provided an in-depth clinical description of the patients. Additionally, genetic screening was used to identify p.R406W carriers in Belgian cohorts of frontotemporal dementia and Alzheimer's disease patients and to calculate p.R406W frequency. In the frontotemporal dementia cohort, we found four p.R406W carriers (n = 647, 0.62%) and three in the Alzheimer's disease cohort (n = 1134, 0.26%). Haplotype sharing analysis showed evidence of a shared haplotype suggesting that they are descendants of a common ancestor. Of the p.R406W patients, we describe characteristics of neuropsychological, imaging and fluid biomarkers as well as neuropathologic examination. Intriguingly, the phenotypic spectrum among the p.R406W patients ranged from typical behavioural variant frontotemporal dementia to clinical Alzheimer's disease, based on CSF biomarker analysis and amyloid PET scan. Heterogeneous overlap syndromes existed in between, with highly common neuropsychiatric symptoms like disinhibition and aggressiveness, which occurred in 100% of frontotemporal dementia and 58% of clinical Alzheimer's disease patients. This was also the case for memory problems, 89% in frontotemporal dementia and 100% in clinical Alzheimer's disease patients. Median age at death was significantly lower in patients with frontotemporal dementia (68 years) compared to clinical Alzheimer's disease patients (79 years), although the sizes of the sub-cohorts are limited and do not allow prognostic predictions. Post-mortem brain analysis of one p.R406W patient with behavioural variant frontotemporal dementia revealed frontotemporal lobar degeneration with tau pathology. Notably, neuropathological investigation showed only 3R tau isoforms in the absence of 4R tau reactivity, an unusual finding in microtubule-associated protein tau-related frontotemporal lobar degeneration. No traces of amyloid pathology were present. Prevalence of the p.R406W mutation was relatively high in both frontotemporal dementia and Alzheimer's disease Belgian patient cohorts. These findings grant new insights into genotype-phenotype correlations of p.R406W carriers. They may help in further unravelling of the pathophysiology of this tauopathy and in facilitating the identification of patients with p.R406W-related frontotemporal lobar degeneration, both in clinical diagnostic and research settings.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Doença de Pick , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Proteínas tau/genética , Degeneração Lobar Frontotemporal/patologia , Mutação/genética , Fenótipo , Biomarcadores
9.
J Alzheimers Dis ; 90(4): 1739-1747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36336933

RESUMO

BACKGROUND: Distinguishing between Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) results in poor diagnostic accuracy. OBJECTIVE: To investigate the utility of electroencephalography (EEG)-based biomarkers in comparison and in addition to established cerebrospinal fluid (CSF) biomarkers in the AD versus FTLD differential diagnosis. METHODS: The study cohort comprised 37 AD and 30 FTLD patients, of which 17 AD and 9 FTLD patients had definite diagnoses. All participants had CSF neurochemical (NCM) biomarker analyses (Aß1-42, T-tau, P-tau181, and Nf-L) and underwent 19-channel resting-state EEG. From the EEG spectra, dominant frequency peaks were extracted in four regions resulting in four dominant frequencies. This produced eight features (4 NCM + 4 EEG). RESULTS: When NCM and EEG markers were combined, the diagnostic accuracy increased significantly. In the whole group, the accuracy went up from 79% (NCM) to almost 82%, while in the definite group only, it went up from around 85% to almost 95%. Two differences in the occurrence of the dominant EEG frequency were discovered: people lacking a clear dominant peak almost all had definite AD, while people with two peaks more often had FTLD. CONCLUSION: Combining EEG with NCM biomarkers resulted in differential diagnostic accuracies of 82% in clinically diagnosed AD and FTD patients and of 95% in patients having a definite diagnosis, which was significantly better than with EEG or NCM biomarkers alone. This suggests that NCM and EEG markers are complementary, revealing different aspects of the disease and therefore confirms again their relevance in developing additional diagnosis tools.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Projetos Piloto , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Diagnóstico Diferencial , Degeneração Lobar Frontotemporal/diagnóstico , Degeneração Lobar Frontotemporal/líquido cefalorraquidiano , Demência Frontotemporal/diagnóstico , Biomarcadores/líquido cefalorraquidiano
10.
Neurobiol Aging ; 116: 67-79, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35580510

RESUMO

Interactors of protein products of known genes for frontotemporal dementia (FTD) are likely to be involved in the molecular pathways towards disease. We therefore applied protein interaction network (PIN) analysis to prioritize candidate genes for rare variant association analysis. We created an FTD-PIN starting from known FTD genes downloading their physical interactors and performed functional enrichment analyses. We identified overrepresented processes in FTD and selected genes (n = 440) belonging to these processes for rare variant analysis in a Belgian cohort of 228 FTD patients and 345 controls. SKAT-O analysis suggested TNFAIP3 as the top gene (p = 0.7 × 10-3) reaching near test-wide significance (p = 2.5 × 10-4). We then analyzed the TNFAIP3-subnetwork within the FTD-PIN which indicated enrichment of several immune signaling networks, suggesting that disrupted immune signaling may be implicated in TNFAIP3-related FTD. Our study demonstrates that integration of PINs with genetic data is a useful approach to increase the power for rare variant association analysis. Furthermore, we present a computational pipeline for identifying potential novel therapeutic targets and risk-modifying variants.


Assuntos
Demência Frontotemporal , Mapas de Interação de Proteínas , Estudos de Coortes , Demência Frontotemporal/metabolismo , Humanos , Sistema Imunitário , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
11.
Trends Genet ; 38(9): 944-955, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35637073

RESUMO

Frontotemporal dementia (FTD) is a primary cause of dementia encompassing a broad range of clinical phenotypes and cellular pathologies. Genetic discoveries in FTD have largely been driven by linkage studies in well-documented extended families, explaining most of the patients with a known pathogenic mutation. In the context of complex diseases, it is hypothesized that mutations with reduced penetrance or a combination of low-effect size variants with environmental factors drive disease. Furthermore, these genes are likely to be part of the interaction networks of known FTD genes, contributing to converging cellular processes. In this review, we examine gene discovery approaches in FTD and introduce network biology concepts as tools to assist gene identification studies in genetically complex disease.


Assuntos
Demência Frontotemporal , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Ligação Genética , Humanos , Mutação , Fenótipo
12.
Acta Neuropathol Commun ; 10(1): 43, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361255

RESUMO

The adenosine triphosphate-binding cassette subfamily A member 7 gene (ABCA7) is associated with Alzheimer's disease (AD) in large genome-wide association studies. Targeted sequencing of ABCA7 suggests a role for rare premature termination codon (PTC) mutations in AD, with haploinsufficiency through nonsense-mediated mRNA decay as a plausible pathogenic mechanism. Since other classes of rare variants in ABCA7 are poorly understood, we investigated the contribution and pathogenicity of rare missense, indel and splice variants in ABCA7 in Belgian AD patient and control cohorts. We identified 8.36% rare variants in the patient cohort versus 6.05% in the control cohort. For 10 missense mutations identified in the Belgian cohort we analyzed the pathogenetic effect on protein localization in vitro using immunocytochemistry. Our results demonstrate that rare ABCA7 missense mutations can contribute to AD by inducing protein mislocalization, resulting in a lack of functional protein at the plasma membrane. In one pedigree, a mislocalization-inducing missense mutation in ABCA7 (p.G1820S) co-segregated with AD in an autosomal dominant inheritance pattern. Brain autopsy of six patient missense mutation carriers showed typical AD neuropathological characteristics including cerebral amyloid angiopathy type 1. Also, among the rare ABCA7 missense mutations, we observed mutations that affect amino acid residues that are conserved in ABCA1 and ABCA4, of which some correspond to established ABCA1 or ABCA4 disease-causing mutations involved in Tangier or Stargardt disease.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Doença de Alzheimer , Mutação de Sentido Incorreto , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Membrana Celular/metabolismo , Estudo de Associação Genômica Ampla , Humanos
13.
Front Aging Neurosci ; 14: 840651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386118

RESUMO

Alzheimer's disease (AD) is the most frequent neurodegenerative disease with an increasing prevalence in industrialized, aging populations. AD susceptibility has an established genetic basis which has been the focus of a large number of genome-wide association studies (GWAS) published over the last decade. Most of these GWAS used dichotomized clinical diagnostic status, i.e., case vs. control classification, as outcome phenotypes, without the use of biomarkers. An alternative and potentially more powerful study design is afforded by using quantitative AD-related phenotypes as GWAS outcome traits, an analysis paradigm that we followed in this work. Specifically, we utilized genotype and phenotype data from n = 931 individuals collected under the auspices of the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study to perform a total of 19 separate GWAS analyses. As outcomes we used five magnetic resonance imaging (MRI) traits and seven cognitive performance traits. For the latter, longitudinal data from at least two timepoints were available in addition to cross-sectional assessments at baseline. Our GWAS analyses revealed several genome-wide significant associations for the neuropsychological performance measures, in particular those assayed longitudinally. Among the most noteworthy signals were associations in or near EHBP1 (EH domain binding protein 1; on chromosome 2p15) and CEP112 (centrosomal protein 112; 17q24.1) with delayed recall as well as SMOC2 (SPARC related modular calcium binding 2; 6p27) with immediate recall in a memory performance test. On the X chromosome, which is often excluded in other GWAS, we identified a genome-wide significant signal near IL1RAPL1 (interleukin 1 receptor accessory protein like 1; Xp21.3). While polygenic score (PGS) analyses showed the expected strong associations with SNPs highlighted in relevant previous GWAS on hippocampal volume and cognitive function, they did not show noteworthy associations with recent AD risk GWAS findings. In summary, our study highlights the power of using quantitative endophenotypes as outcome traits in AD-related GWAS analyses and nominates several new loci not previously implicated in cognitive decline.

14.
Mol Neurodegener ; 17(1): 31, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477481

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the leading cause of dementia, clinically characterized by memory deficits and progressive cognitive decline. Despite decades of research effective therapies are lacking, and a large part of the genetic heritability remains unidentified. ABCA7 and ABCA1, members of the ATP-binding cassette subfamily A (ABCA), were identified as AD risk genes in genome-wide association studies. Nevertheless, genetic and/or functional studies propose a link between AD and two other members of the ABCA subclass, i.e., ABCA2 and ABCA5. MAIN BODY: Changes in expression or dysfunction of these transporters were found to increase amyloid ß levels. This might be related to the common role of ABCA transporters in cellular cholesterol homeostasis, for which a prominent role in AD development has been suggested. In this review, we provide a comprehensive overview and discussion on the contribution of the ABCA subfamily to the etiopathogenesis of AD. CONCLUSIONS: A better understanding of the function and identification of disease-associated genetic variants in ABCA transporters can contribute to the development of novel therapeutic strategies for AD.


Assuntos
Doença de Alzheimer , Subfamília A de Transportador de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Estudo de Associação Genômica Ampla , Humanos
15.
Biomolecules ; 12(3)2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35327632

RESUMO

Recently, disease-associated variants of the TUBA4A gene were identified in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we present the neuropathological report of a patient with the semantic variant of primary progressive aphasia with a family history of Parkinsonism, harboring a novel frameshift mutation c.187del (p.Arg64Glyfs*90) in TUBA4A. Immunohistochemistry showed abundant TAR DNA-binding protein 43 kDa (TDP-43) dystrophic neurite pathology in the frontal and temporal cortex and the dentate gyrus of the hippocampus, consistent with frontotemporal lobar degeneration (FTLD). The observed pathology pattern fitted best with that of FTLD-TDP Type C. qPCR showed the presence of mutant TUBA4A mRNA. However, no truncated TUBA4A was detected at the protein level. A decrease in total TUBA4A mRNA and protein levels suggests loss-of-function as a potential pathogenic mechanism. This report strengthens the idea that N-terminal TUBA4A mutations are associated with FTLD-TDP. These N-terminal mutations possibly exert their pathogenic effects through haploinsufficiency, contrary to C-terminal TUBA4A mutations which are thought to disturb the microtubule network via a dominant-negative mechanism.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Humanos , Mutação , RNA Mensageiro/genética
16.
Alzheimers Dement (N Y) ; 8(1): e12227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35229019

RESUMO

INTRODUCTION: The bridging integrator 1(BIN1) rs744373 risk polymorphism has been linked to increased [18F]AV1451 signal in non-demented older adults (ie., mild cognitive impairment [MCI] plus cognitively normal [CN] individuals). However, the association of BIN1 with in vivo tau, amyloid beta (Aß) burden, and cognitive impairment in the asymptomatic stage of Alzheimer's disease (AD) remains unknown. METHODS: The BIN1 effect on [18F]AV1451 binding was evaluated in 59 cognitively normal (CN) participants (39% apolipoprotein E [APOE ε4]) from the Flemish Prevent AD Cohort KU Leuven (F-PACK), as well as in 66 Alzheimer's Disease Neuroimaging Initiative (ADNI) CN participants, using voxelwise and regional statistics. For comparison, 52 MCI patients from ADNI were also studied. RESULTS: Forty-four percent of F-PACK participants were BIN1 rs744373 risk-allele carriers, 21% showed high amyloid burden, and 8% had elevated [18F]AV1451 binding. In ADNI, 53% and 50% of CNs and MCIs, respectively, carried the BIN1 rs744373 risk-allele. Amyloid positivity was present in 23% of CNs and 51% of MCIs, whereas 2% of CNs and 35% of MCIs showed elevated [18F]AV1451 binding. There was no significant effect of BIN1 on voxelwise or regional [18F]AV1451 in F-PACK or ADNI CNs, or in the pooled CN sample. No significant association between BIN1 and [18F]AV1451 was obtained in ADNI MCI patients. However, in the MCI group, numerically higher [18F]AV1451 binding was observed in the BIN1 risk-allele group compared to the BIN1 normal group in regions corresponding to more progressed tau pathology. DISCUSSION: We could not confirm the association between BIN1 rs744373 risk-allele and elevated [18F]AV1451 signal in CN older adults or MCI. Numerically higher [18F]AV1451 binding was observed, however, in the MCI BIN1 risk-allele group, indicating that the previously reported positive effect may be confounded by group. Therefore, when studying how the BIN1 risk polymorphism influences AD pathogenesis, a distinction should be made between asymptomatic, MCI, and dementia stages of AD.

17.
Mol Psychiatry ; 27(4): 1990-1999, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35173266

RESUMO

Alzheimer's disease (AD) biomarkers represent several neurodegenerative processes, such as synaptic dysfunction, neuronal inflammation and injury, as well as amyloid pathology. We performed an exome-wide rare variant analysis of six AD biomarkers (ß-amyloid, total/phosphorylated tau, NfL, YKL-40, and Neurogranin) to discover genes associated with these markers. Genetic and biomarker information was available for 480 participants from two studies: EMIF-AD and ADNI. We applied a principal component (PC) analysis to derive biomarkers combinations, which represent statistically independent biological processes. We then tested whether rare variants in 9576 protein-coding genes associate with these PCs using a Meta-SKAT test. We also tested whether the PCs are intermediary to gene effects on AD symptoms with a SMUT test. One PC loaded on NfL and YKL-40, indicators of neuronal injury and inflammation. Four genes were associated with this PC: IFFO1, DTNB, NLRC3, and SLC22A10. Mediation tests suggest, that these genes also affect dementia symptoms via inflammation/injury. We also observed an association between a PC loading on Neurogranin, a marker for synaptic functioning, with GABBR2 and CASZ1, but no mediation effects. The results suggest that rare variants in IFFO1, DTNB, NLRC3, and SLC22A10 heighten susceptibility to neuronal injury and inflammation, potentially by altering cytoskeleton structure and immune activity disinhibition, resulting in an elevated dementia risk. GABBR2 and CASZ1 were associated with synaptic functioning, but mediation analyses suggest that the effect of these two genes on synaptic functioning is not consequential for AD development.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/genética , Biomarcadores , Proteína 1 Semelhante à Quitinase-3/genética , Proteínas de Ligação a DNA , Ácido Ditionitrobenzoico , Humanos , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intercelular , Neurogranina/genética , Fatores de Transcrição , Proteínas tau
18.
Brain ; 145(11): 4056-4064, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35026840

RESUMO

Alzheimer's disease CSF biomarkers 42 amino acid long amyloid-ß peptide (Aß1-42), total tau protein (T-tau), and tau protein phosphorylated at threonine 181 (P-tau181) are considered surrogate biomarkers of Alzheimer's disease pathology, and significantly improve diagnostic accuracy. Their ability to reflect neuropathological changes later in the disease course is not well characterized. This study aimed to assess the potential of CSF biomarkers measured in mid to late stage Alzheimer's disease to reflect post-mortem neuropathological changes. Individuals were selected from two autopsy cohorts of Alzheimer's disease patients in Antwerp and Amsterdam. Neuropathological diagnosis was performed according to the updated consensus National Institute on Aging-Alzheimer's Association guidelines, which includes quantification of amyloid-ß plaque, neurofibrillary tangle, and neuritic plaque load. CSF samples were analysed for Aß1-42, T-tau, and P-tau181 by ELISA. One hundred and fourteen cases of pure definite Alzheimer's disease were included in the study (mean age 74 years, disease duration 6 years at CSF sampling, 50% females). Median interval between CSF sampling and death was 1 year. We found no association between Aß1-42 and Alzheimer's disease neuropathological change profile. In contrast, an association of P-tau181 and T-tau with Alzheimer's disease neuropathological change profile was observed. P-tau181 was associated with all three individual Montine scores, and the associations became stronger and more significant as the interval between lumbar puncture and death increased. T-tau was also associated with all three Montine scores, but in individuals with longer intervals from lumbar puncture to death only. Stratification of the cohort according to APOE ε4 carrier status revealed that the associations applied mostly to APOE ε4 non-carriers. Our data suggest that similar to what has been reported for Aß1-42, plateau levels of P-tau181 and T-tau are reached during the disease course, albeit at later disease stages, reducing the potential of tau biomarkers to monitor Alzheimer's disease pathology as the disease progresses. As a consequence, CSF biomarkers, which are performant for clinical diagnosis of early Alzheimer's disease, may not be well suited for staging or monitoring Alzheimer's disease pathology as it progresses through later stages.


Assuntos
Doença de Alzheimer , Proteínas tau , Feminino , Humanos , Idoso , Masculino , Proteínas tau/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Apolipoproteína E4 , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Placa Amiloide , Biomarcadores/líquido cefalorraquidiano , Progressão da Doença , Treonina , Fragmentos de Peptídeos/líquido cefalorraquidiano
19.
Neurobiol Aging ; 110: 113-121, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34620513

RESUMO

Premature termination codon (PTC) mutations in the granulin gene (GRN) lead to loss-of-function (LOF) of the progranulin protein (PGRN), causing frontotemporal lobar degeneration (FTLD) by haploinsufficiency. GRN expression is regulated at multiple levels, including the 5' untranslated region (UTR). The main 5' UTR of GRN and an alternative 5' UTR, contain upstream open reading frames (uORFs). These mRNA elements generally act as cis-repressors of translation. Disruption of each uORF of the alternative 5' UTR, increases protein expression with the 2 ATG-initiated uORFs being capable of initiating translation. We performed targeted sequencing of the uORF regions in a Flanders-Belgian cohort of patients with frontotemporal dementia (FTD) and identified 2 genetic variants, one in each 5' UTR. Both variants increase downstream protein levels, with the main 5' UTR variant rs76783532 causing a significant 1.5-fold increase in protein expression. We observed that the presence of functional uORFs in the alternative 5' UTR act as potential regulators of PGRN expression and demonstrate that genetic variation within GRN uORFs can alter their function.


Assuntos
Códon sem Sentido/genética , Demência Frontotemporal/genética , Degeneração Lobar Frontotemporal/genética , Expressão Gênica/genética , Mutação com Perda de Função/genética , Fases de Leitura Aberta/genética , Progranulinas/genética , Progranulinas/metabolismo , Regiões 5' não Traduzidas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Cultura , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Trends Genet ; 38(3): 258-272, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34535299

RESUMO

Neurodegenerative brain diseases (NBDs) are characterized by cognitive decline and movement impairments caused by neuronal loss in different brain regions. A large fraction of the genetic heritability of NBDs is not explained by the current known mutations. Genome-wide association studies identified novel disease-risk loci, adding to the genetic basis of NBDs. Many of the associated variants reside in noncoding regions with distinct molecular functions. Genetic variation in these regions can alter functions and contribute to disease pathogenesis. Here, we discuss noncoding variants associated with NBDs. Methods for better functional interpretation of noncoding variation will expand our knowledge of the genetic architecture of NBDs and broaden the routes for therapeutic strategies.


Assuntos
Encefalopatias , Doenças Neurodegenerativas , Encéfalo/patologia , Encefalopatias/genética , Encefalopatias/patologia , Predisposição Genética para Doença , Variação Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA